

- المدة الزمنية لإنجاز الموضوع هي 4 ساعات.
- يتكون الموضوع من (5) صفحات مرقمة من 1/5 إلى 5/5
 - يتكون الموضوع من أربعة تمارين مستقلة فيما بينها.
- المترشح ملزم بانجاز التمرين3 و التمرين4 و الاختيار بين انجاز إما التمرين1 و إما التمرين2
 - على المترشح أن ينجز في المجموع ثلاثة (3) تمارين:
 - التمرين 1 و يتعلق بالحسابيات (اختياري)
 - **{و إما**
 - ل التمرين2 ويتعلق بالبنيات الجبرية (اختياري)

 - التمرين 4 و يتعلق بالتحليل (إجباري)

لا يسمح باستعمال الآلة الحاسبة كيفما كان نوعها

اختر وأنجز إما التمرين| وإما التمرين2

و أنجز إجباريا التمرين3 و التمرين4

التمرين1: (3.5 نقط/ اختياري) (إذا اخترت إنجاز التمرين1 فلا تنجز التمرين2)

(D) : $7x^3$ - 13y = 5 المعادلة $x' \notin y$ نعتبر في

(D) من ϕ' من (x,y) حلا للمعادلة (x,y)

اً) بین أن x و 13 أولیان فیما بینهما.

 x^{12} ° 1 [13] باستنتج أن: 0.5

 $x^3 \circ 10$ [13] بين أن: 1

 x^{12} ° 3 [13] د) استنتج أن: 0.5

اصفحة	11	
	2	NS 24

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2020 - الموضوع - مادة: الرياضيات- شعبة العلوم الرياضية (أ) و (ب)

 ϕ' و استنتج من الأسئلة السابقة أن المعادلة ϕ لا تقبل حلا في ϕ

1

التمرين2: (3.5 نقطة/اختياري) (إذا اخترت إنجاز التمرين2 فلا تنجز التمرين1)

نرمز بالرمز $M_2(i)$ لمجموعة المصفوفات المربعة من الرتبة الثانية.

نذكر أن
$$(i^*, ')$$
 حلقة غير تبادلية و واحدية وحدتها $\frac{\ddot{0}}{\ddot{b}}$ $I = \underbrace{R}_{0}^{2} = I$ و أن $(M_{2}(R), +, ')$ زمرة تبادلية.

- $(M_2(i),')$ بین أن E جزء مستقر من (1- أ) بین أن E
 - E بين أن الضرب غير تبادلي في E 0. 5

دمرة غير تبادلية. (E,') زمرة غير تبادلية.

$$F = \frac{1}{4}M(x) = \frac{3}{4} \quad x - \frac{10}{2}/x\hat{1} \quad x\hat{1} \quad x\hat$$

$$(E, ')$$
 نحو $(i^*, ')$ نحو $(i^*,$

ب) استنتج أن (F,') زمرة تبادلية يجب تحديد عنصر ها المحايد.

التمرين3: (3.5 نقط/إجباري)

لیکن m عدد عقدی غیر منعدم.

الجزء الأول:

$$(E)$$
 : z^3 - $2mz^2$ + $2m^2z$ - $m^3=0$ ، z المعادلة ذات المجهول \pm

((E) المعادلة m حلا للمعادلة (E) المعادلة (E) المعادلة (0.5

m المخالفين للحل و z_2 حلي المعادلة (E) المخالفين للحل -2

$$\frac{1}{z_1} + \frac{1}{z_2} = \frac{1}{m}$$
 :أ) تحقق أن

$$z_2$$
 و z_1 ب) في حالة: $m=1+e^{irac{p}{3}}$ ، أكتب على الشكل الجبري و 0.5

صفحة	1t	
	3	NS 24

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2020 - الموضوع - مادة: الرياضيات- شعبة العلوم الرياضية (أ) و (ب)

الجزء الثاني:

$$(O;u,v)$$
 المستوى العقدي منسوب إلى معلم متعامد ممنظم ومباشر

$$b=me^{-irac{p}{3}}$$
 و $a=me^{irac{p}{3}}$ و التوالي: $a=me^{irac{p}{3}}$

$$A$$
 ليكن P مركز الدوران الذي زاويته $\frac{\exp \ddot{0}}{2\dot{a}}$ و يحول P الميكن P

$$B$$
 و يحول A إلى Q و يحول A إلى Q و يحول A إلى Q

$$O$$
و B مركز الدوران الذي زاويته $\frac{\ddot{e}}{2}$ و يحول B إلى R

1- بين أن النقط
$$O$$
 و A عير مستقيمية.

$$r=mrac{\sqrt{2}}{2}\;e^{-irac{7p}{12}}$$
 . وأن لحق $P=mrac{\sqrt{2}}{2}\;e^{irac{7p}{12}}$. وأن لحق $P=mrac{\sqrt{2}}{2}\;e^{irac{7p}{12}}$. وأن لحق $P=mrac{\sqrt{2}}{2}\;e^{irac{7p}{12}}$

$$q=m\sqrt{2} \, \sin \frac{\sqrt[3]{p}}{12 \, \dot{\overline{\phi}}}$$
 هو: Q هو: Q بين أن لحق Q هو: Q

و أن المستقيمين (
$$QQ$$
) و $Q=PR$ و أن المستقيمين (QQ) و $Q=PR$ متعامدان.

التمرين 4: (13 نقطة/إجباري)

الجزء الأول:

نعتبر الدالة f المعرفة على المجال I = [0; + 1] بما يلي:

$$f(x) = x^3 ln \frac{\partial}{\partial x} + \frac{1 \ddot{o}}{x \dot{o}}$$
 ، $p; + \Psi$ [من x من $f(0) = 0$

و ليكن
$$C$$
 ($\begin{vmatrix} \vec{l} & \vec{l} & \vec{l} \\ \vec{l} & \vec{l} \end{vmatrix} = 1$ منحناها في معلم متعامد ممنظم C (نأخذ: C) و ليكن

بين أن: [x,x+1] ، بين أن: t a ln(t) ، بين أن: المنتهية على الدالة [x,x+1] ، بين أن:

(P)
$$("x\hat{1} \ \ \); + \ \ \ \)$$
 ; $\frac{1}{x+1} < ln \in \frac{1}{x} + \frac{1}{x} < \frac{0}{x}$

0.5 من المعمال العبارة
$$(P)$$
 بين أن الدالة f قابلة للاشتقاق على اليمين في (P)

ب) باستعمال العبارة
$$(P)$$
 بين أن المنحنى (C) يقبل فر عا شلجميا يتم تحديد اتجاهه.

الصفحة 4	NS 24	الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2020 – الموضوع - مادة: الدياضيات- شعبة العام والدياضية (أ) ه (ب)
5		- مادة: الرياضيات- شعبة العلوم الرياضية (أ) و (ب)

و أن: $\mathbb{D};+\mathbb{Y}$ و أن يين أن الدالة f قابلة للاشتقاق على $\mathbb{D};+\mathbb{Y}$

$$("x\hat{1} \ \ \ \ \ \ \); + \ \ \ \ \ \ \ f'(x) = 3x^2 \frac{\alpha}{6} \ln \frac{\alpha}{6} + \frac{1 \ddot{0}}{x \dot{\overline{\alpha}}} \quad \frac{1}{3(1+x)\dot{\overline{\alpha}}}$$

((P) باستنتج أن الدالمة
$$f$$
 تزايدية قطعا على I (يمكن استعمال العبارة f 0.5

$$f$$
 ب) اعط جدول تغیرات f

$$g(x) = \frac{f(x)}{x}$$
 نضع: $p; +$ [الكل x من المجال] نضع: 4

 *_1 م استنتج أن الدالة *_2 تزايدية قطعا على

a بين أن المعادلة
$$g(x)=1$$
 تقبل على $\frac{*}{1}$ ، حلا وحيدا نرمز إليه بالرمز $g(x)=1$

(
$$ln\frac{3}{2}=1.5$$
 و $ln2=0.7$ و أن المجال]], 2[ينتمي إلى المجال]], 2[ينتمي إلى المجال]

a و 0 هي:
$$f(x)=x$$
 استنتج أن الحلول الوحيدة للمعادلة $f(x)=x$

$$(C)$$
 مثل مبيانيا المنحنى (5)

(
$$(C)$$
حدد نصف المماس على اليمين في النقطة O و الفرع الشلجمي للمنحنى

بين أن الدالة
$$f$$
 تقابل من I نحو I (نرمز بالرمز f^{-1} لتقابلها العكسي) 0.25

الجزء الثاني:

$$u_{n+1} = f^{-1}(u_n)$$
 ، ψ من ψ من ψ من المعرفة بما يلي: $0 < u_0 < a$ و لكل $(u_n)_{n=0}$ المعرفة بما يلي:

("
$$n$$
Î ¥) ; $0 < u_n < a$ نا: 0.5

ب) استنتج أن المتتالية
$$(u_n)_{n^3 \ 0}$$
 تزايدية قطعا.

ج) بين أن المتتالية
$$(u_n)_{n^3 \ 0}$$
 متقاربة.

$$\lim_{n \oplus + \frac{1}{4}} u_n \quad 3 \quad 0.5$$

الجزء الثالث:

$$("x\hat{1}\ I)$$
 ; $F(x)=\sum_{x=0}^{1}f(t)dt$:نعتبر الدالة $F(x)=\int_{0}^{1}f(t)dt$ نعتبر الدالة $F(x)=\int_{0}^{1}f(t)dt$

5 5	NS 24	الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2020 – الموضوع - مادة: الرياضيات- شعبة العلوم الرياضية (أ) و (ب)	
		F(x) أدرس حسب قيم x ، إشارة أدرس حسب قيم المارة أدرس	0.5
		F' بين أن الدالة F قابلة للاشتقاق على I و حدد مشتقتها الأولى	0.5
		I استنتج أن F تناقصية قطعا على ا	0.25
		$("x\hat{1} [1;+¥[) ; F(x)£ (1-x)ln2]$ بین أن: 2-أ) بین أن:	0.5
		$\lim_{x \to x} F(x)$ استنتج (ب	0.25
		3- أ) باستعمال مكاملة بالأجزاء، بين أن:	0.5
		$("x\hat{1} \ \); + \ \ \) ; F(x) = \frac{\ln 2}{4} - \frac{x^4}{4} \ln \underbrace{\ddot{e}}_{t}^{2} + \frac{1}{x} \frac{\ddot{o}}{\dot{e}} + \frac{1}{4} \grave{o}_{x}^{1} \frac{t^3}{t+1} dt$	
	($\frac{t^3}{1+t} = t^2 - t + 1 - \frac{1}{1+t}$: الاحظ أن : $b_x + \frac{t^3}{t+1} dt$ بالحسب $b_x + \frac{t^3}{t+1} dt$ الكل $b_x + \frac{t^3}{t+1} dt$	0.5
	(" <i>x</i> Î	$p; + [) ; F(x) = \frac{5}{24} - \frac{x^3}{12} + \frac{x^2}{8} - \frac{x}{4} + \frac{1}{4}ln(1+x) - \frac{x^4}{4}ln\overset{\text{@}}{\cancel{6}} + \frac{1}{\cancel{6}} \frac{\ddot{o}}{\cancel{6}} $	0.5
		$\mathbf{\grave{O}}_{0}^{-1}f(t)dt$: ثم استنتج قیمة $\lim_{x \ 0^{+}}F(x)$ د $\lim_{x \ 0^{+}}F(x)$	0.5
		$v_n=\overset{k=n-1}{\overset{\alpha}{a}}\underset{k=0}{\overset{k=n}{\overleftarrow{e}}}F\overset{\underline{\omega}}{\overset{k}{\overleftarrow{e}}}\frac{2k+1}{\overset{\square}{\overleftarrow{o}}}F\overset{\underline{\omega}}{\overset{k}{\overleftarrow{o}}}$ -4	
		$\{0,1,,,,,,,n-1\}$) بين أنه لكل عدد صحيح طبيعي k من $\{0,1,,,,,,,n-1\}$ عدد صحيح طبيعي الم	0.5
		$-\frac{1}{2n}f\underbrace{\frac{\approx 2k+1}{\overset{\circ}{\wp}}}_{2n}\underbrace{f}_{\overset{\circ}{\wp}} F\underbrace{\frac{\approx 2k+1}{\overset{\circ}{\wp}}}_{2n}F\underbrace{\frac{\approx k}{\overset{\circ}{\wp}}}_{\overset{\circ}{\wp}} F\underbrace{\frac{\approx k}{\overset{\circ}{\wp}}}_{n\overset{\circ}{\wp}} \underbrace{f}_{-\frac{1}{2n}}f\underbrace{\frac{\approx k}{\overset{\circ}{\wp}}}_{n\overset{\circ}{\wp}}$	
		$\left("n \hat{\mathbf{I}} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	0.5
		$(\frac{2k+1}{2n} < \frac{k+1}{n})$ (لاحظ أن:	
		ج)- بين أن المتتالية العددية $\left(v_{n} ight)_{n\hat{1}\Psi^{*}}$ متقاربة ثم حدد نهايتها.	0.25

انتهى

 المادة
 الرياضيات
 مدة الإنجاز
 4

 الشعبة أو المسلك
 شعبة العلوم الرياضية (أ) و (ب)
 المعامل
 9

إنتباه: إذا أنجز المترشح التمرينين الاختياريين (بشكل كلي أو جزئي) تحتسب له فقط أحسن نقطة محصلة من بين النقطتين و ليس مجموع النقطتين.

سلم	عناصر الإجابة	رین1	التمر
التنقيط			
0.5	إذا كان d قاسما مشتركا موجبا للعددين x و 13 فإنه قاسم مشترك للعددين 13 و δ ، و منه	(أ	-1
	d = 1		
0.5	الما أو لي يقسم x و نطبق مبر هنة فيرما x أو لي يقسم x	ب)	
1	$2'$ 7° 1 [13] ك x^3 ° 2′ 5 [13] كان: $7x^3$ ° 5 [13] كينا:	ج)	
0.5	x^{12} ° 3 [13] و منه $(x^3)^4$ ° 10 $(x^3)^4$ ° 10 [13] دينا	(7	
1	إذا كان (x,y) و (x,y) حلا للمعادلة (D) فإنه حسب السؤال 1- لدينا (x,y) و		-2
	x ¹² ° 3 [13] و هذا غير ممكن.		

سلم	عناصر الإجابة	ىن2	التمر
التنقيط			
0.5	$ig(M_2(i),')$ استقرار E في	(أ	
0.5	E البرهان على عدم تبادلية الضرب في	ب)	-1
0.5	التحقق	ج)	
0.5	زمرة غير تبادلية $(E,')$		-2
0.5	j تشاکل	(-3
1	رمرة تبادلية $j=F$ و $j=(i,*,')$ زمرة تبادلية $j=(i,*,')$	Ĺ)	
	j (1)= I العنصر المحايد هو		

قيط	سلم التن	عناصر الإجابة	التمرين3
			الجزء الأول:
		(E) Û $(z-m)(z^2-mz+m^2)=0$ لىينا:	
	$\frac{1-i\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}m = e^{-i\frac{p}{3}}m$ و $\frac{1+i\sqrt{3}}{2}m = e^{i\frac{p}{3}}m$ و $m = e^{-i\frac{p}{3}}m$ بالإضافة إلى الحل m نجد الحلين:	-1

2 	NR 24	الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2020 - عناصر الإجابة - مادة: الرياضيات- شعبة العلوم الرياضية (أ) و (ب)			
	0.25	$\frac{1}{z_1} + \frac{1}{z_2} = \frac{z_1 + z_2}{z_1 z_2} = \frac{m}{m^2}$ البينا:	(أ		2
	0.5	$z_2=\sqrt{3}rac{\cancel{x}\sqrt{3}}{2}$ - $irac{1\ddot{0}}{2\dot{\overline{x}}}$ و $z_1=i\sqrt{3}$ نجد $z_1=i\sqrt{3}$	ب)		-2
	Į.	الجزء الثاني:		I	
	0.25	النقط O و A و B غير مستقيمية			-1
	1	حساب p حساب	Ó		-2
	1 -	حساب <i>r</i>	(,		
	0.5	qحساب q	ڊ)		
		O.25 $OQ=PR$ و نستنتج أن: $Q=PR$ و نستنتج أن:			-3
	0.5				

0.25.....(*OQ*)^ (*PR*)

	سلم التنقيط	عناصر الإجابة		التمرين4
		الجزء الأول:		
0.5	0.25	5		-1
0.0	0.2	$\frac{1}{x+1} < ln \frac{\ddot{e}}{\ddot{x}} + \frac{1 \ddot{o}}{x \dot{\overline{\phi}}} < \frac{1}{x}$ التأطير:		-
0.5		$\lim_{x \otimes 0^+} \frac{f(x)}{x} = 0$ الذينا: $\frac{x^2}{1+x} < \frac{f(x)}{x} < x$	(أ	-2
0.5		$\lim_{x \oplus + \frac{1}{4}} \frac{f(x)}{x} = + \frac{1}{4} \text{إذن} \frac{x^2}{1+x} < \frac{f(x)}{x}$ ادينا:	ب)	
0.5		يقبل فرعا شلجميا في اتجاه محور الأراتيب (C)		
0.75	0.25	الدالة قابلة للاشتقاق	(أ	
0.73	0.25	f'(x) حساب		
0.5		$ln_{\mathbf{c}}^{\mathbf{a}} + \frac{1 \ddot{\mathbf{o}}}{x \dot{\overline{\mathbf{o}}}} \frac{1}{3(1+x)} > ln_{\mathbf{c}}^{\mathbf{a}} + \frac{1 \ddot{\mathbf{o}}}{x \dot{\overline{\mathbf{o}}}} \frac{1}{1+x} > 0$.	ب)	-3
		f'(x) > 0 الذن:		
0.25		f جدول تغیرات f	(ج	
0.75		عساب g'(x) عساب g'(x)	(1	-4

الصفحة	
	الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2020 - عناصر الإجابة
3 NR 24	- مادة: الرياضيات- شعبة العلوم الرياضية (أ) و (ب)

	$ln\ddot{\mathbf{g}}$ ا الخن: $1 + \frac{1\ddot{\mathbf{o}}}{x\dot{\mathbf{o}}} + \frac{1\ddot{\mathbf{o}}}{2(1+x)} > ln\ddot{\mathbf{g}}$ ا الخن: $1 + \frac{1\ddot{\mathbf{o}}}{x\dot{\mathbf{o}}} + \frac{1\ddot{\mathbf{o}}}{1+x} > 0$		
	0.25 $g'(x) > 0$		
	مبر هنة القيم الوسيطية تعطي وجود a و الرتابة القطعية للدالة g تعطي وحدانيته a	(,,	
0.5	0.25 أو كذلك g تقابل من $y;+$ إلى $y;+$ إلى $y;+$	ب)	
	نتحقق من (2)< 1< و(1) يتحقق من (1)		
0.5	$f(x)=x \ \hat{\mathbf{U}} \ x=0 \ x$ ()چول المعادلة: أوج	(7	
0.5	إنشاء المنحنى	(1	-5
0.25	I تقابل من I نحو f		الجزء الثاني
0.5	$c^{-1}(0) = 0 c^{-1}(0) = 0 c^{-1}(0) = 0$; د	*
0.5	$f^{-1}(0)=0$ و $f^{-1}(a)=a$ و کون $f^{-1}(a)=a$ و الترجع و $f^{-1}(a)=a$		-1
0.5	g (D; a D= D; 1[(أ	
0.5	0 < g(x) < 1 من أجل $0 < x < a$ من أجل	<i>(</i>	-2
0,5	$0 < u_n < f^{-1}(u_n) = u_{n+1}$ اِذْن: $0 < f(u_n) < u_n$ فإن $0 < u_n < a$ اِذْن	ب)	
0.25	متتالية تزايدية و مكبورة	(ح	
	إذا وضعنا: $u_n + \lim_{n \to + 1} u_n$ فإن $l = \lim_{n \to + 1} u_n$ لأن		
0.5	(" n^3 1); $0 < u_0 < u_n < a$		-3
	$f\left(x ight) = x$ و بما أن f^{-1} متصلة على $\left[0;a ight]$ (و بالخصوص في f) فإن f هي حل المعادلة		
	$l=\mathrm{a}$ اِذن		
		٤:	الجزء الثالث
0.5	x^3 اذن $f(x)^3$ موجبة من أجل 1 $x \pm 1$ و سالبة من أجل 1 $f(x)^3$ ا	(أ	
	Iقابلة للاشتقاق على F		
0.5		ب)	-1
	0.25 (" $x\hat{1} I$); $F'(x) = -f(x)$		
0.25	$F'(x) = 0 \hat{U} x = 0$ $g("x\hat{I} I)$; $F'(x) = -f(x) < 0$	ج)	
0.5	$\grave{\mathrm{O}}_{\!\!1}^{x}f(t)dt^{3}$ (x- 1) $ln2$ ادينا: $(x^{3} \ 1; \ f(x)^{3} \ ln2$	(1	-2
0.25	$\lim_{x \in \mathbb{R}^+ \Psi} F(x) = - \Psi$	ب)	
0.5	مكاملة بالأجزاء	(أ	
0.5	$\grave{O}_{x}^{1} \frac{t^{3}}{t+1} dt = \frac{5}{6} - \ln 2 - \frac{x^{3}}{3} + \frac{x^{2}}{2} - x + \ln(1+x)$	ب)	-3
0.5	المتساوية	ج)	

لصفحة 4	4 NR 24	الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2020 - عناصر الإجابة - مادة: الرياضيات- شعبة العلوم الرياضية (أ) و (ب)	
		0.25 $\lim_{x \to 0^+} F(x) = \frac{5}{24}$	

0.5	0.25 $\lim_{x \to 0^+} F(x) = \frac{5}{24}$	۷	
0.5	0.25 متصلة على اليمين في 0 إذن: $\frac{5}{24}$ إذن: $\frac{5}{24}$ متصلة على اليمين في F		
0.5	نطبيق مبر هنة أو متفاوتة التزايدات المنتهية على الدالة F في المجال g التزايدات المنتهية على الدالة F في المجال g	()	-4
	$ \overset{\mathcal{E}}{\xi} x \hat{1} \overset{\dot{\mathcal{E}}}{\overset{\dot{\mathcal{E}}}{\xi}}, \frac{2k+1}{2n} \overset{\ddot{\mathcal{U}}}{\overset{\dot{\mathcal{U}}}{\xi}} ; \qquad f \overset{\mathcal{E}}{\xi} \frac{k}{n} \overset{\ddot{\mathcal{U}}}{\overset{\dot{\mathcal{U}}}{\sigma}} f(x) f f \overset{\mathcal{E}}{\xi} \frac{2k+1}{2n} \overset{\ddot{\mathcal{U}}}{\overset{\dot{\mathcal{U}}}{\dot{\sigma}}} \qquad \qquad$		
0.5	$rac{2k+1}{2n} < rac{k+1}{n}$ نلاحظ أن:	(-	
0.25	f مجاميع ريمان المرتبطة بالدالة $\frac{1}{n} \stackrel{k=n-1}{\overset{k}{a}} f \stackrel{k=n-1}{\overset{k}{o}} f \stackrel{k}{\overset{k}{o}} = \frac{1}{n} \stackrel{k=n}{\overset{k}{a}} f \stackrel{k}{\overset{o}{\overset{i}{o}}} \stackrel{i}{\overset{i}{o}} = \frac{1}{n} \stackrel{k=n-1}{\overset{k}{\overset{i}{o}}} f \stackrel{k}{\overset{i}{\overset{i}{o}}} \stackrel{i}{\overset{i}{\overset{i}{o}}} = \frac{1}{n} \stackrel{k}{\overset{i}{\overset{i}{o}}} \stackrel{i}{\overset{i}{\overset{i}{o}}} \stackrel{i}{\overset{i}{\overset{i}{o}}} = \frac{1}{n} \stackrel{k}{\overset{i}{\overset{i}{o}}} \stackrel{i}{\overset{i}{\overset{i}{o}}} \stackrel{i}{\overset{i}{\overset{i}{o}}} = \frac{1}{n} \stackrel{k}{\overset{i}{\overset{i}{o}}} \stackrel{i}{\overset{i}{\overset{i}{\overset{i}{o}}}} \stackrel{i}{\overset{i}{\overset{i}{\overset{i}{o}}}} \stackrel{i}{\overset{i}{\overset{i}{\overset{i}{\overset{i}{o}}}}} = \frac{1}{n} \stackrel{k}{\overset{i}{\overset{i}{\overset{i}{o}}}} \stackrel{i}{\overset{i}{\overset{i}{\overset{i}{\overset{i}{\overset{i}{o}}}}} \stackrel{i}{\overset{i}{\overset{i}{\overset{i}{\overset{i}{\overset{i}{\overset{i}{\overset{i}{$	(ح	
	المتصلة على القطعة $\begin{bmatrix} 0,1 \end{bmatrix}$ اذن المتتاليتين $\begin{bmatrix} \frac{\kappa}{2} \\ \frac{\kappa}{2} \end{bmatrix}$ اذن المتتاليتين المتاليتين و $\begin{bmatrix} \frac{\kappa}{2} \\ \frac{\kappa}{2} \end{bmatrix}$ اذن المتتاليتين المتعالى المتعال		
	$F(0) = \mathop{\grave{O}}_0^1 f(x) dx = \frac{5}{24}$ لهما نفس النهاية التي هي		
	- $\frac{1}{2}F(0)$ - $\frac{5}{48}$ و منه المتتالية (v_n) متقاربة (خاصية تلأطير النهايات) و نهايتها		

مرحبا بكم طلمزيد من الدروس و الملخصات و الامتحاثات تفضلوا بزيارتنا

www.tahmilsoft.com