

Correction d'examen national du baccalauréat

Filières S.E internationales Session normale 2023

- Sujet -

NS 28F

SSSSSSSSSSSSSSSSSSS

ß

RM

page

Matière

Physique Chimie

Durée

3h

Sciences physiques Branche

Coefficient

7

Exercice 01:

- 1 Etude d'une solution aqueuse d'acide éthanoïque
- 1.1. Equation de la réaction entre l'acide éthanoïque et l'eau :

$$CH_3COOH_{(aq)} + H_2O_{(\ell)} \rightleftarrows CH_3COO^-_{(aq)} + H_3O^+_{(aq)}$$

1.2. On montre que $\alpha(CH_3COOH) = 1 - \tau$:

On a:

Équation de	e la réaction	$CH_3COOH_{(aq)}$	$H_2O_{(\ell)}$	$\Rightarrow CH_3COO^{-}_{(aq)}$	$H_3O^+_{(aq)}$	
État Avancement		Les quantités de matière en « <i>mol</i> »				
Initial	Initial 0			0	0	
Intermédiaire	x	$C_A.V-x$	En e	x	x	
à l'équilibre	$oldsymbol{x_{\mathrm{\acute{e}}oldsymbol{q}}}$	$C_A.V-x_{\acute{ m e}q}$	exces	$x_{ m eq}$	$oldsymbol{x_{\mathrm{\acute{e}}oldsymbol{q}}}$	
maximal	x_{max}	$C_A.V-x_{max}$	Ø.	x_{max}	x_{max}	

Du tableau d'avancement : $\begin{cases} [CH_3COOH]_{\acute{e}q} = \frac{c_A \cdot V - x_{\acute{e}q}}{V_T} = c_A - \frac{x_{\acute{e}q}}{V_T} = c_A - \frac{x_{\acute{e}q}}{V} \\ [CH_3COOH]_{\acute{e}q} + [CH_3COO^-]_{\acute{e}q} = \frac{c_A \cdot V - x_{\acute{e}q}}{V_T} + \frac{x_{\acute{e}q}}{V_T} = c_A - \frac{x_{\acute{e}q}}{V_T} + \frac{x_{\acute{e}q}}{V_T} = c_A$

Alors:
$$\alpha(CH_3COOH) = \frac{[CH_3COOH]_{\acute{e}q}}{[CH_3COOH]_{\acute{e}q} + [CH_3COO^-]_{\acute{e}q}}$$
c.à.d.: $\alpha(CH_3COOH) = \frac{C_A - \frac{x_{\acute{e}q}}{V}}{C_A}$
c.à.d.: $\alpha(CH_3COOH) = 1 - \frac{x_{\acute{e}q}}{C_AV}$
c.à.d.: $\alpha(CH_3COOH) = 1 - \frac{x_{\acute{e}q}}{x_{max}}$

c.à.d.:
$$\alpha(CH_3COOH) = \frac{c_A - \frac{x_{eq}}{V}}{c_A}$$

c.à.d.:
$$\alpha(CH_3COOH) = 1 - \frac{\frac{\chi_{eq}}{V}}{C_A}$$

c.à.d.:
$$\alpha(CH_3COOH) = 1 - \frac{x \in q}{C_A.V}$$

c.à.d. :
$$\alpha(CH_3COOH) = 1 - \frac{x_{eq}}{x_{max}}$$

d'où :
$$\alpha(CH_3COOH) = 1 - \tau$$

A.N.:
$$\alpha(CH_3COOH) = 1 - \frac{x_{\acute{e}q}}{c_A v} = 1 - \frac{[H_3O^+]_{\acute{e}q} \cdot V}{c_A v} = 1 - \frac{[H_3O^+]_{\acute{e}q}}{c_A} = \frac{1 - \frac{10^{-pH}}{c_A}}{c_A}$$

$$\alpha(CH_3COOH) = 1 - \frac{10^{-3.05}}{5.10^{-2}}$$

$$\alpha(CH_3COOH) = 0.9822 = 98.22\%$$

1.3. On montre que $pK_{A1} = 4,79$:

On a:
$$pH = pK_{A1} + log\left(\frac{[CH_3COO^-]_{\acute{e}q}}{[CH_3COOH]_{\acute{e}q}}\right)$$

c.à.d.:
$$pK_{A1} = pH + log\left(\frac{c_A \cdot V}{x_{Ag}} - 1\right)$$

c.à.d.:
$$pK_{A1} = pH - log \left(\frac{[CH_3COO^-]_{\acute{e}q}}{[CH_3COOH]_{\acute{e}g}} \right)$$

c.à.d.:
$$pK_{A1} = pH + log\left(\frac{c_A}{[H_3O^+]_{\acute{e}g}} - 1\right)$$

c.à.d.:
$$pK_{A1} = pH - log \left(\frac{\frac{x_{\acute{e}q}}{v_T}}{\frac{C_A \cdot V - x_{\acute{e}q}}{v_T}}\right)$$

D'où:
$$pK_{A1} = pH + log\left(\frac{c_A}{10^{-pH}} - 1\right)$$

c.à.d.:
$$pK_{A1} = pH - log\left(\frac{x_{\acute{e}q}}{c_{A}V - x_{\acute{e}q}}\right)$$

A.N.:
$$pK_{A1} = 3,05 + log \left(\frac{5.10^{-2}}{10^{-3.05}} - 1\right)$$

c.à.d.:
$$pK_{A1} = pH + log\left(\frac{c_A.V - x_{eq}}{x_{eq}}\right)$$

$$pK_{A1} = 4,7912 \approx 4,79$$

2 – Etude de la réaction de l'acide éthanoïque avec l'ion méthanoate

2.1. L'équation de la réaction :

$$CH_3COOH_{(aq)} + HCOO^-_{(aq)} \rightleftarrows CH_3COO^-_{(aq)} + HCOOH_{(aq)}$$

2.2. L'expression de $Q_{r_{\acute{e}q}}$ en fonction de K_{A1} et K_{A2} :

On sait que :
$$\boldsymbol{Q_{r_{\acute{e}q}}} = \frac{[CH_3COO^-]_{\acute{e}q}\cdot[HCOOH]_{\acute{e}q}}{[CH_3COOH]_{\acute{e}q}\cdot[HCOO^-]_{\acute{e}q}}$$

$$\text{c.à.d.}: \ \boldsymbol{Q_{r_{\acute{e}q}}} = \frac{[CH_3COO^-]_{\acute{e}q} \cdot [H_3O^+]_{\acute{e}q}}{[CH_3COOH]_{\acute{e}q}} \cdot \frac{[HCOOH]_{\acute{e}q}}{[H_3O^+]_{\acute{e}q} \cdot [HCOO^-]_{\acute{e}q}}$$

c.à.d.:
$$Q_{r_{\acute{e}q}} = K_{A1} \cdot \frac{1}{K_{A2}}$$

D'où:
$$Q_{r_{\acute{e}q}} = \frac{K_{A1}}{K_{A2}}$$

A.N.:
$$Q_{r_{\acute{e}q}} = \frac{10^{-pK_{A1}}}{10^{-pK_{A2}}} = \frac{10^{-4.79}}{10^{-3.75}}$$

 $Q_{r_{\acute{e}q}} = 9, 12 \cdot 10^{-2}$

2.3. L'expression du pH en fonction de pK_{A1} et pK_{A2} :

On a:
$$pH = pK_{A1} + log\left(\frac{[CH_3COO^-]_{\acute{e}q}}{[CH_3COOH]_{\acute{e}q}}\right) \quad (1)$$

Et on a:
$$pH = pK_{A2} + log\left(\frac{[HCOO^-]_{\acute{e}q}}{[HCOOH]_{\acute{e}g}}\right)$$
 (2)

En ajoutant (1) à (2):
$$pH + pH = pK_{A1} + log\left(\frac{[cH_3coo^-]_{\acute{e}q}}{[cH_3cooH]_{\acute{e}q}}\right) + pK_{A2} + log\left(\frac{[Hcoo^-]_{\acute{e}q}}{[HcooH]_{\acute{e}q}}\right)$$

c.à.d.:
$$2 pH = pK_{A1} + pK_{A2} + log \left(\frac{[CH_3COO^-]_{\acute{e}q}}{[CH_3COOH]_{\acute{e}q}} \right) + log \left(\frac{[HCOO^-]_{\acute{e}q}}{[HCOOH]_{\acute{e}q}} \right)$$

c.à.d.: $2 pH = pK_{A1} + pK_{A2} + log \left(\frac{[CH_3COO^-]_{\acute{e}q}}{[CH_3COOH]_{\acute{e}q}} \cdot \frac{[HCOO^-]_{\acute{e}q}}{[HCOOH]_{\acute{e}q}} \right)$

c.à.d.:
$$2 pH = pK_{A1} + pK_{A2} + log \left(\frac{[CH_3COO^-]_{\acute{e}q}}{[CH_3COOH]_{\acute{e}q}} \cdot \frac{[HCOO^-]_{\acute{e}q}}{[HCOOH]_{\acute{e}q}} \right)$$

d'autre part :

	- Part						
	Équation de la réaction		$CH_3COOH_{(aq)}$	$+ HCOO^{(aq)} \rightleftharpoons$	$CH_3COO^{(aq)}$	$+$ $HCOOH_{(aq)}$	
	État	Avancement	\	Les quantités de ma	atière en « <i>mol</i> »		
	Initial	0	$C_A.V_1$	$C_B.V_2$	0	0	
	à l'équilibre	$oldsymbol{x}_{\mathrm{\acute{e}}oldsymbol{q}}$	$C_A.V_1 - x_{\acute{e}q}$	$C_B.V_2-x_{cute{q}}$	$oldsymbol{x}_{cute{\mathbf{q}}}$	$oldsymbol{x}_{cute{ ext{e}}oldsymbol{q}}$	
Donc:	$\overline{[CH_3COOH]_{\acute{e}q}} =$	= [<i>HCOO</i> ⁻] _{éq}	car $C_A = C_B$ et	$V_1 = V_2$			
Et:	$[CH_3COO^-]_{\acute{e}q} =$	$= [HCOOH]_{\acute{e}q} = \frac{x}{1}$	Céq VT				
Alors	$: 2 pH = pK_{A1}$	$+pK_{A2}+log(1)$, avec log (2	1) = 0			
Finale	Finalement: $ pH = \frac{pK_{A1} + pK_{A2}}{2} $						
A.N:	$pH = \frac{4,79+3,75}{2}$	1					
	pH=4,27						

Donc:
$$[CH_3COOH]_{\acute{e}q} = [HCOO^-]_{\acute{e}q}$$
 car $C_A = C_B$ et $V_1 = V_2$

Et:
$$[CH_3COO^-]_{\acute{e}q} = [HCOOH]_{\acute{e}q} = \frac{x_{\acute{e}q}}{V_n}$$

Alors:
$$2 pH = pK_{A1} + pK_{A2} + log(1)$$
, avec $log(1) = 0$

Finalement:
$$pH = \frac{pK_{A1} + pK_{A2}}{2}$$

A.N:
$$pH = \frac{4,79+3,75}{2}$$

$$pH = 4,27$$

3 – Etude de la réaction d'acide éthanoïque avec le méthanol :

3.1. L'équation de la réaction :

$$CH_3 - COOH_{(\ell)} + CH_3 - OH_{(\ell)} \rightleftarrows CH_3 - COO - CH_{3(\ell)} + H_2O_{(\ell)}$$

3.2. La courbe correspondante à la réaction utilisant le catalyseur :

L'ajout d'un catalyseur permet d'accélérer la transformation chimique ayant lieu entra l'acide éthanoïque et le méthanol, alors la courbe correspondante à ce cas est la courbe (C_1) .

3.3. La composition du mélange à l'équilibre :

On a:

Équation de	e la réaction	$CH_3 - COOH_{(\ell)} + CH_3 - OH_{(\ell)} \rightleftarrows CH_3 - COO - CH_{3(\ell)} + H_2O_{(\ell)}$						
État Avancement			Les quantités de matière en « <i>mol</i> »					
Initial	0	0, 9	0,9	0	0			
intermédiaire	x	0, 9 - x	0, 9 - x	x	x			
à l'équilibre	$oldsymbol{x_{\mathrm{\acute{e}}q}}$	$0,9-x_{\acute{e}q}$	$0,9-x_{\acute{e}q}$	$x_{ m \'e}q$	$oldsymbol{x}_{\mathrm{\acute{e}}oldsymbol{q}}$			

\triangleright On détermine la valeur de $x_{\acute{e}q}$:

Du tableau d'avancement : $n_{\acute{e}q}(Acide) = 0$, $9 - x_{\acute{e}q}$ et de la courbe : $n_{\acute{e}q}(Acide) = n_f(Acide) = 0$, $3 \ mol$

Donc: $x_{\acute{e}a} = 0,6 \ mol$

Donc la composition du mélange à l'équilibre est :

$$\checkmark$$
 $n_{\acute{e}q}(Acide) = 0, 9 - x_{\acute{e}q} = 0, 9 - 0, 6 = 0, 3 \ mol$

$$\sqrt{n_{\acute{e}q}(Alcool)} = 0,9 - x_{\acute{e}q} = 0,9 - 0,6 = 0,3 \, mol$$

$$\checkmark$$
 $n_{\acute{e}q}(Ester) = x_{\acute{e}q} = 0,6 \ mol$

$$\checkmark$$
 $n_{\acute{e}q}(Eau) = x_{\acute{e}q} = 0,6 \ mol$

3.4. La valeur de $t_{1/2}$ correspondante à la courbe (C_2):

On a d'après tableau d'avancement :

$$n_{1/2}(Acide) = 0, 9 - x_{\frac{1}{2}} = 0, 9 - \frac{x_{\acute{e}q}}{2}$$

$$n_{1/2}(Acide)0, 9 - \frac{0.6}{2} = 0, 6 \ mol$$

Par projection on trouve $t_{1/2} = 3,5 h$

3.5. Le rendement de la transformation chimique étudiée :

On sait que :
$$r = \frac{n_{exp}}{n_{th}} = \frac{x_{éq}}{x_{max}}$$

Or le mélange est équimolaire, alors : $x_{max} = n_0 = 0$, 9

Donc:
$$r = \frac{0.6}{0.9} = 0.6667 = 66.67\%$$

À l'équilibre on ajoute **0**, **1** *mol* d'acide éthanoïque au m

$$\sqrt{n'_0(Acide)} = 0,3+0,1=0,4 mol$$

$$\checkmark$$
 $n'_0(Alcool) = 0, 3 mol$

$$\checkmark$$
 $n'_0(Ester) = 0,6 mol$

$$\checkmark n'_0(Eau) = 0,6 mol$$

D'où:

	0 +						
mol	0	<i>t</i> _{1/25}	10	15	20	25	3(
nélange,	, donc :		•	(
			~6				
		C					
		1/3					
$OH_{(\ell)}$ -	+ CH ₃	$-OH_{(\ell)}$ $\overline{\epsilon}$	<i>• CH</i> ₃ −	<i>coo</i> –	$CH_{3(\ell)}$	$+H_2O_{(\ell)}$)
T	ec 01191	tités de m	atière en	"mol			

t(h)

Équation de	e la réaction	$CH_3 - COOH_{(\ell)} + CH_3 - OH_{(\ell)} \rightleftarrows CH_3 - COO - CH_{3(\ell)} + H_2O_{(\ell)}$						
État	État Avancement		Les quantités de matière en « mol »					
Initial	0	0,4	0,3	0, 6	0, 6			
intermédiaire	x	0, 4 - x'	0, 3 - x'	0,6+x'	x'			
à l'équilibre	$oldsymbol{x_{\mathrm{\acute{e}}oldsymbol{q}}}$	$0,4-x'_{eq}$	0 , $3 - \mathbf{x'}_{\acute{\mathbf{e}} oldsymbol{q}}$	0 , $6 + \mathbf{x'}_{\acute{\mathbf{e}}\mathbf{q}}$	$0,6+\mathbf{x'}_{\acute{\mathbf{e}}\boldsymbol{q}}$			

Du tableau d'avancement : $x'_{max} = 0,3 \ mol$

$$\text{D'autre part}: \pmb{K} = \frac{[Ester]_{\acute{eq}}.[Eau]_{\acute{eq}}}{[Acide]_{\acute{eq}}.[Alcool]_{\acute{eq}}}$$

$$4 = \frac{(0.6 + x_{'\acute{e}q}).(0.6 + x_{'\acute{e}q})}{(0.4 - x_{'\acute{e}q}).(0.3 - x_{'\acute{e}q})}$$

$$4 = \frac{x_{'\acute{e}q}^2 + 1.2 \cdot x_{'\acute{e}q} + 0.36}{x_{'\acute{e}q}^2 - 0.7 \cdot x_{'\acute{e}q} + 0.12}$$

$$4 = \frac{x'_{\acute{e}q}^2 + 1.2 \cdot x'_{\acute{e}q} + 0.36}{x'_{\acute{e}q}^2 - 0.7 \cdot x'_{\acute{e}q} + 0.12}$$

le discriminant :
$$\Delta = b^2 - 4ac = (-4)^2 - 4 \times 3 \times 0, 12 = 14,56$$

 $\uparrow n_a (mol)$

n_f (<mark>Acide</mark>)

0,8

0,6

0.4

0,2

$$4.x'_{\acute{e}g}^2 - 2.8.x'_{\acute{e}g} + 0.48 = x'_{\acute{e}g}^2 + 1.2.x'_{\acute{e}g} + 0.36$$

$$4. x'_{\acute{e}q}^{2} - 2.8. x'_{\acute{e}q} + 0.48 = x'_{\acute{e}q}^{2} + 1.2. x'_{\acute{e}q} + 0.36$$

$$x_{1} = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-(-4) - \sqrt{14.56}}{2 \times 3} = 0.03 \ mol$$

$$3. x'_{\acute{e}q}^{2} - 4. x'_{\acute{e}q} + 0.12 = 0$$

$$x_{2} = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-(-4) + \sqrt{14.56}}{2 \times 3} = 1.3 \ mol$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-(-4) + \sqrt{14,56}}{2 \times 3} = 1,3 \text{ mol}$$

Or
$$x'_{\acute{e}q} < x'_{max}$$

Alors
$$x'_{\acute{e}q} = 0,03 \, mol$$

D'où
$$r = \frac{n_{exp}}{n_{th}} = \frac{n_{eq}(ester)}{n_{max}(ester)} = \frac{0.6 + x_{eq}}{0.6 + x_{max}} = \frac{0.6 + 0.03}{0.6 + 0.3} = 0, 7 = 70 \%$$

Exercice 02:

1 – désintégration du tritium :

1.1. L'affirmation juste :

A	Le noyau ${}_{2}^{3}He$ à un nombre de masse ${}_{2}^{6}$ egal à 5.			
В	La radioactivité β^- est caractéristique des noyaux très lourds.			
С	Au bout du temps $t=2t_{1/2}$, à partir du début de désintégration, le nombre de noyaux désintégrés dans un échantillon radioactif représente 25% du nombre de noyaux initial.			
D				
Е				

1.2. L'équation de la désintégration du noyau du tritium :

Le tritium ${}_{1}^{3}H$ est un isotope radioactif émetteur β^{-} . Le noyau formé est l'un des isotopes de l'hélium, donc :

$$^3_1H \rightarrow ^A_ZHe + ^0_{-1}e$$

D'après la loi de conservation : $\begin{cases} 3 = A + 0 \\ 1 = Z + (-1) \end{cases} \Rightarrow \begin{cases} A = 3 \\ Z = 2 \end{cases}$ D'où : $\frac{^3H}{^3H} \rightarrow \frac{^3He}{^3He} + \frac{^0e}{^3He}$

$$\qquad \qquad \Big\{ \begin{matrix} A = 3 \\ Z = 2 \end{matrix} \Big\}$$

D'où: ${}_{1}^{3}H \rightarrow {}_{2}^{3}He + {}_{-1}^{0}e$

1.3. La relation entre $t_{1/2}$ et λ :

On a d'après la définition : $N(t_{1/2}) = \frac{N_0}{2}$

c.à.d.:
$$N_0 \cdot e^{-\lambda \cdot t_{1/2}} = \frac{N_0}{2}$$

c.à.d.:
$$ln(e^{-\lambda \cdot t_{1/2}}) = ln(\frac{1}{2})$$

c.à.d.:
$$-\lambda \cdot t_{1/2} = -\ln(\frac{2}{1})$$

c.à.d.:
$$\lambda \cdot t_{1/2} = ln\left(\frac{2}{1}\right)$$

Finalement: $\lambda = \frac{ln(2)}{t_{1/2}}$

1.4. Calcul de l'activité a_1 :

Lorsque 90% des noyaux du tritium sont désintégrés, il reste 10% des noyaux radioactifs $(N_1 = 10\%, N_0)$, qui ont une activité a_1 , donc :

$$a_1 = \lambda . N_1 = \frac{ln(2)}{t_{1/2}} . 10\%. N_0$$

$$\frac{0^{-6} \times 6.02 \times 10^{23}}{3}$$
deutérium ${}^{2}_{1}H$:

c.à.d.:
$$a_1 = \frac{ln(2)}{t_{1/2}} \times 0, 1 \times \frac{m_0.N_A}{M({}_3^3H)}$$

c.à.d.:
$$a_1 = \frac{ln(2)}{t_{1/2}} \times 0, 1 \times \frac{m_0.N_A}{M(\frac{3}{1}H)}$$
A.N.:
$$a_1 = \frac{ln(2)}{12,32 \times 3,16 \times 10^7} \times 0, 1 \times \frac{2 \times 10^{-6} \times 6,02 \times 10^{23}}{3}$$

$$a_1 = 7,145.10^7 Bq$$

2 – Réaction de fusion du tritium ${}_{1}^{3}H$ et de deutérium ${}_{1}^{2}H$:

2.1.

				.	
	L'énergie qu'il faut fournir à un noyau de tritium	au	epos	pour le dissocier en ces nucléons au repos est	Vaci
a	de 8,475 <i>MeV</i> .	2			Vrai
b	Le tritium est plus stable que le deutérium.				Vrai

2.2. Calcul de l'énergie libérée de la réaction de fusion :

On a l'équation de la fusion est : ${}_{1}^{3}H + {}_{1}^{2}H \longrightarrow {}_{1}^{4}He + {}_{0}^{1}n$

Donc:
$$E_{\ell ib} = |E_{\ell}({}_{1}^{3}H) + E_{\ell}({}_{1}^{2}H) - E_{\ell}({}_{2}^{4}He)|$$

A.N.:
$$E_{\ell ib} = |8,475 + 2,366 + 28,296|$$

 $E_{\ell ib} = 17,455 \, MeV$

Exercice 03:

1 - Réponse d'un dipôle RL à un échelon de tension :

1.1. L'équation différentielle vérifiée par i(t) l'intensité du courant :

D'après la loi d'additivité des tensions :

$$u_L + u_R = E$$

Tels que :
$$u_L = L \cdot \frac{di}{dt}$$
 et $u_R = R \cdot i$

Alors:
$$L \cdot \frac{di}{dt} + R \cdot i = E$$

On multiplie le tout par $\frac{1}{R}$

D'où:
$$\frac{L}{R} \cdot \frac{di}{dt} + i = \frac{E}{R}$$

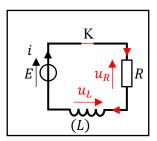
1.2.

1.2.1. Détermination des expressions de A et B :

À l'instant
$$t = 0$$
, on a $i(t = 0) = 0$

c.à.d.:
$$A + B \cdot e^0 = 0$$

Donc:
$$B = -A$$



D'autre part, on a :
$$\begin{cases} i(t) = A + B \cdot e^{-\frac{t}{\tau}} \\ \frac{di}{dt} = -\frac{1}{\tau} \cdot B \cdot e^{-\frac{t}{\tau}} \end{cases}$$

On remplace dans l'équation différentielle :

$$\frac{L}{R} \cdot \frac{di}{dt} + i = \frac{E}{R}$$

$$\frac{L}{R} \cdot \left(-\frac{1}{\tau}\right) \cdot B \cdot e^{-\frac{t}{\tau}} + A + B \cdot e^{-\frac{t}{\tau}} = \frac{E}{R}$$

$$-B \cdot e^{-\frac{t}{\tau}} + A + B \cdot e^{-\frac{t}{\tau}} = \frac{E}{R}$$

$$A = \frac{E}{R}$$

D'où: $\mathbf{B} = -\frac{E}{R}$

Finalement:
$$i(t) = \frac{E}{R} - \frac{E}{R} \cdot e^{-\frac{t}{\tau}}$$
 \Rightarrow $i(t) = \frac{E}{R} \cdot \left(1 - e^{-\frac{t}{\tau}}\right)$

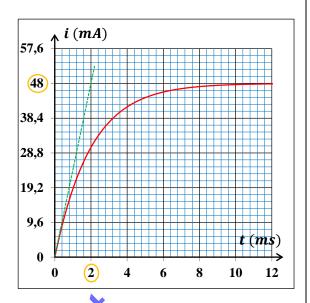
1.2.2. On montre que L = 1 H:

On a:
$$\tau = \frac{L}{R}$$
 et $I_P = \frac{E}{R}$

Donc:
$$L = \tau . R = \tau . \frac{E}{I_P}$$

A.N.:
$$L = 2 \times 10^{-3} \times \frac{24}{48 \times 10^{-3}}$$

$$L = 1 H$$



Méthode 1

D'après la loi d'additivité des tensions :

$$u_L(t) + u_R(t) = E$$

$$u_L(t) = E - u_R(t)$$

$$u_L(t) = E - R \cdot i(t)$$

$$u_L(t) = E - R \cdot \frac{E}{R} \cdot \left(1 - e^{-\frac{t}{\tau}}\right)$$

$$u_L(t) = E - E + E \cdot e^{-\frac{t}{\tau}}$$

$$u_L(t) = E \cdot e^{-\frac{t}{\tau}}$$

On a:

On a:
$$u_L(t) = L \cdot \frac{di}{dt}$$

$$u_L(t) = L \cdot \left(-\frac{1}{\tau}\right) \cdot B \cdot e^{-\frac{t}{\tau}}$$

$$u_L(t) = L \cdot \left(-\frac{R}{L}\right) \cdot \left(-\frac{E}{R}\right) \cdot e^{-\frac{t}{\tau}}$$

$$u_L(t) = E \cdot e^{-\frac{t}{\tau}}$$

Méthode 2

2 – Circuit oscillant LC:

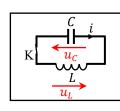
2.1. L'équation différentielle vérifiée par la tension $u_{\mathcal{C}}(t)$:

D'après la loi d'additivité des tensions :

$$u_L + u_C = 0$$

$$L \cdot \frac{di}{dt} + u_C = 0$$

$$L \cdot C \cdot \frac{d^2 u_C}{dt^2} + u_C = 0$$



2.2.

2.2.1. La valeur de la capacité C :

On sait que : $T_0 = 2\pi$. \sqrt{LC}

c.à.d.:
$$T_0^2 = 4\pi^2$$
. *LC*

Donc :
$$C = \frac{{T_0}^2}{4\pi^2 L}$$

A.N.:
$$C = \frac{(2 \times 10^{-3})^2}{4 \times 10 \times 1}$$

 $C = 10^{-7} F$

2.2.2. L'énergie magnétique E_m emmagasinée dans la bobine à l'instant t = 1,8 ms:

Puisque la résistance du circuit est nulle, alors l'énergie totale du circuit se conserve au cours du temps, donc :

$$E_{T} = E_{e}(t) + E_{m}(t)$$

$$E_{m}(t) = E_{T} - E_{e}(t)$$

$$E_{m}(t) = \frac{1}{2} \cdot C \cdot U_{C,max}^{2} - \frac{1}{2} \cdot C \cdot u_{c}^{2}(t)$$

A.N.:

$E_m(t) = \frac{1}{2} \cdot C \cdot \left(U_{C,max}^2 - u_c^2(t) \right)$ $E_m(t) = \frac{1}{2} \times 10^{-7} \times (10^2 - 8^2)$

$E_m(t) = 1.8 \times 10^{-6} J$

3 - Modulation d'amplitude d'un signal:

3.1. La proposition juste :

De la courbe : $T_s = 5 ms$

Donc: $f_s = \frac{1}{T_s} = \frac{1}{5 \times 10^{-3}} = 200 \ Hz$

Aussi: $20 T_p = T_s$

Alors: $F_p = 20 f_s$

 $F_p = 4000 Hz = 4 kHz$

D'où la proposition juste est B.

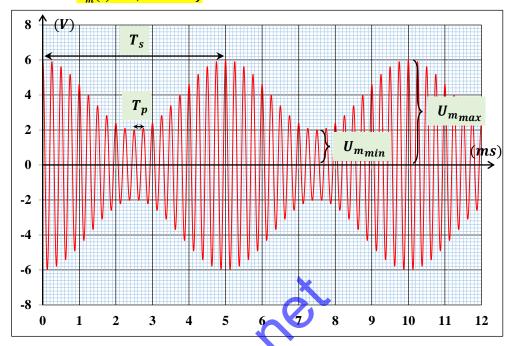
3.2. Vrai ou faux:

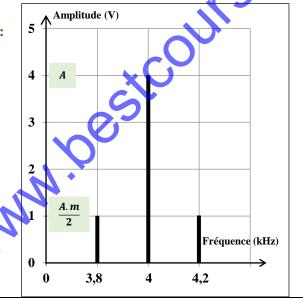
D'après la courbe : $\begin{cases} U_{m_{max}} = 6 V \\ U_{m_{min}} = 2 V \end{cases}$ Donc : $m = \frac{U_{m_{max}} - U_{m_{min}}}{U_{m_{max}} + U_{m_{min}}} = \frac{4}{8} = \frac{0.5}{0.5}$ D'autre part : pour k. $P_m = 1$ (2.4.4)

$$U_0 = \frac{U_{m_{max}} + U_{m_{min}}}{2} = \frac{6 + 2}{2} = \frac{4V}{2}$$

b. Faux

3.3. L'allure du spectre de fréquence :





Exercice 04:

Partie I:

1 - Mouvement de la balle en chute libre :

1.1. Les équations horaires numériques $v_z(t)$ et z(t):

- ♠ Le système étudié : {La balle (S)}
- ightharpoonup Bilan des forces externes : seulement le poids \vec{P}
- ullet On choisit un repère $(0, \vec{k})$ orienté vers le haut, lié à un référentiel terrestre, supposé galiléen.
- ♠ On applique la IIème loi de Newton :

$$\sum_{\substack{n \\ n}} \vec{F}_{ext} = m. \vec{a}_G$$

$$\vec{P} = m.\vec{a}_G$$

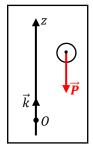
♠ La projection sur l'axe (0z) donne :

$$P_z = m. a_z$$

$$-P = m.a_{z}$$

$$-m.g = m.a_z$$

$$a_z = -g = -10 \text{ m. s}^{-2} = Cte$$



Or la trajectoire est rectiligne, alors le mouvement est rectiligne uniformément varié.

Donc:
$$\begin{cases} v_z(t) = a_z \cdot t + V_0 \\ z(t) = \frac{1}{2} \cdot a_z \cdot t^2 + V_0 \cdot t + z_0 \end{cases} \Rightarrow \begin{cases} v_z(t) = -10 \cdot t + 12 \\ z(t) = -5 \cdot t^2 + 12 \cdot t \end{cases}$$

1.2.1. la hauteur maximale h:

À la hauteur maximale, la vitesse s'annule, donc : $v_z(t_h) = 0$

c.à.d.:
$$-10.t_h + 12 = 0$$
 \Rightarrow $t_h = \frac{-12}{-10} = 1,2 s$

D'où:
$$h = z(t_h) = -5.t_h^2 + 12.t_h$$

 $h = -5 \times 1, 2^2 + 12 \times 1, 2$
 $h = 7.2 m$

1.2.2. La valeur absolus de V_{Oz} lors du passage vers le bas par le point O:

Lors du passage vers le bas, et par application de la IIème loi de Newton, en considérant que la nouvelle vitesse initiale est

nulle et que
$$z_0 = h = 7, 2 m$$
, on trouve :
$$\begin{cases} v_z(t) = -10.t \\ z(t) = -5.t^2 + 7, 2 \end{cases}$$

Au point O,
$$z(t_0) = 0$$
 \Rightarrow c.à.d.: $-5.t_0^2 + 7, 5 = 0$ \Rightarrow $t_0 = \sqrt{\frac{-7.2}{-5}} = 1,2 \text{ s}$

D'où :
$$|V_{0z}| = |v_z(t_0)| = |-10.t_0|$$
 \rightarrow $|V_{0z}| = |-10 \times 1, 2| = 12 \ m.s^{-1}$

2 - Mouvement de chute de la balle avec frottement :

2.1. On montre que l'équation différentielle vérifiée par la vitesse v_z s'écrit :

- ♠ Le système étudié : {La balle (S)}
- ightharpoonup Bilan des forces externes : le poids \vec{P} et les frottements fluide \vec{f} .
- ullet On choisit un repère $(m{0}, \vec{k})$ orienté vers le haut, lié à un référentiel terrestre, supposé galiléen.
- ♠ On applique la IIème loi de Newton :

$$\Sigma \vec{F}_{ext} = m. \vec{a}_G$$

$$\vec{P} + \vec{f} = m. \vec{a}_G$$

♠ La projection sur l'axe (Oz) donne :

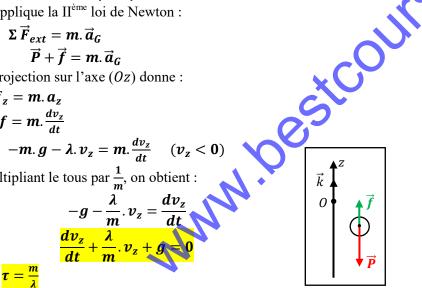
$$P_z + f_z = m. a_z$$
$$-P + f = m. \frac{dv_z}{dt}$$

$$-m.g - \lambda.v_z = m.\frac{dv_z}{dt} \quad (v_z < 0)$$

En multipliant le tous par $\frac{1}{m}$, on obtient :

$$-g - \frac{\lambda}{m} \cdot v_z = \frac{dv_z}{dt}$$
$$\frac{dv_z}{dt} + \frac{\lambda}{m} \cdot v_z + g = 0$$

$$\frac{dv_z}{dt} + \frac{\lambda}{m} \cdot v_z + g = 0$$



2.2. La norme de la vitesse limite du mouvement de G:

On sait que
$$V_{\ell im} = Cte$$

Donc:
$$\frac{dV_{\ell im}}{dt} + \frac{\lambda}{m} . V_{\ell im} + g = 0$$

c.à.d.:
$$\frac{\lambda}{m} V_{\ell im} + g = 0$$

Donc:
$$V_{\ell im} = \left| -g \cdot \frac{m}{1} \right|$$
 (la norme est tirs positive)

A.N.:
$$V_{\ell im} = \left| -10 \times \frac{80 \times 10^{-3}}{0.12} \right|$$

$$V_{\ell im} = 6,67 \, m. \, s^{-1}$$

2.3. La valeur de $v_z(t_i)$ en utilisant la méthode d'Euler :

On sait que d'après la méthode d'Euler :
$$v_z(t_i) = a_{i-1} \cdot \Delta t + v_{i-1}$$
 (1)

Et d'autre part, d'après l'équation différentielle :
$$a_{i-1} + \frac{\lambda}{m} \cdot v_{i-1} + g = 0$$
 (2)

D'après (2) :
$$v_{i-1} = -\frac{m}{\lambda}$$
. $(a_{i-1} + g) = -\frac{80 \times 10^{-3}}{0.12} \times (5 + 10) = -10 \ m. \ s^{-1}$

On remplace dans (1):
$$v_z(t_i) = 5 \times 66 \times 10^{-3} - 10$$
 \Rightarrow $v_z(t_i) = -9,67 \text{ m. s}^{-1}$

Partie II:

1. On montre que $E_{pp} = \frac{1}{2} mg\ell\theta^2$:

On a : $E_{pp}=mgz+\mathcal{C}te$, et d'après l'énoncé à $z=0, E_{pp}=0$, donc $\mathcal{C}te=0$

Alors: $E_{pp} = m \cdot g \cdot z$ D'après la figure : $z = \ell - d \implies z = \ell - \ell \cdot \cos(\theta) \implies z = \ell \cdot \left(1 - \cos(\theta)\right)$

 θ un angle petit alors $1 - \cos(\theta) = \frac{\theta^2}{2}$ \Rightarrow $z = \ell \cdot \frac{\theta^2}{2}$

D'où: $E_{pp} = \frac{1}{2} \cdot m \cdot g \cdot \ell \cdot \theta^2$

2.1. Détermination de $\dot{\theta}_{max}$ la vitesse angulaire maximale :

Le mouvement se fait sans frottements, alors l'énergie mécanique se conserve au cours du temps, c.à.d. :

$$E_{m} = E_{c_{max}} = E_{pp_{max}}$$

$$\frac{1}{2} \cdot J_{\Delta} \cdot \dot{\theta}_{max}^{2} = \frac{1}{2} \cdot m \cdot g \cdot \ell \cdot \theta_{0}^{2}$$

$$\frac{1}{2} \cdot m \cdot \ell^{2} \cdot \dot{\theta}_{max}^{2} = \frac{1}{2} \cdot m \cdot g \cdot \ell \cdot \theta_{0}^{2}$$

$$\ell \cdot \dot{\theta}_{max}^{2} = g \cdot \theta_{0}^{2}$$

$$\dot{\theta}_{max} = \theta_{0} \cdot \sqrt{\frac{g}{\ell}}$$

A.N.:

$$\dot{\theta}_{max} = \theta_0. \sqrt{\frac{g}{\ell}}$$

$$\dot{\theta}_{max} = 9^{\circ} \times \frac{\pi}{180^{\circ}} \times \sqrt{\frac{10}{2.4}}$$

$$\dot{\theta}_{max} = 0.32 \ rad. s^{-1}$$
of vérifiée par l'abscisse angulaire $\theta(t)$:

2.2. L'équation différentielle du mouvement vérifiée par l'abscisse angulaire $\theta(t)$:

D'après la conservation de l'énergie mécanique :

$$\frac{dE_{m}}{dt} = 0$$

$$\frac{d\left(\frac{1}{2} \cdot J_{\Delta} \cdot \theta^{2} + \frac{1}{2} \cdot m \cdot g \cdot \ell \cdot \theta^{2}\right)}{dt} = 0$$

$$\frac{1}{2} \cdot J_{\Delta} \cdot 2 \cdot \dot{\theta} \cdot \ddot{\theta} + \frac{1}{2} \cdot m \cdot g \cdot \ell \cdot 2 \cdot \theta \cdot \dot{\theta} = 0$$

$$m \cdot \ell^{2} \cdot \dot{\theta} \cdot \ddot{\theta} + m \cdot g \cdot \ell \cdot \theta \cdot \dot{\theta} = 0$$

$$m \cdot \ell^{2} \cdot \dot{\theta} \cdot \left(\ddot{\theta} + \frac{g}{\ell} \cdot \theta\right) = 0$$

$$\ddot{\theta} + \frac{g}{\ell} \cdot \theta = 0$$

3. Calcule de la période propre :

On a: $T_0 = 2\pi \cdot \sqrt{\frac{\ell}{g}}$

A.N.: $T_0 = 2\pi \cdot \sqrt{\frac{2.4}{10}}$

 $T_0 = 3.078 \, s$

-----FIN-----

www.bestcours.net